World Happiness Report 2023

World Happiness Report 2023 160 References Alessa, A., & Faezipour, M. (2018). A review of influenza detection and prediction through social networking sites. Theoretical Biology and Medical Modelling, 15(1), 1–27. Auxier, B., & Anderson, M. (2021). Social media use in 2021. Pew Research Center, 1, 1–4. Bellet, C., & Frijters, P. (2019). Big data and well-being. World Happiness Report 2019. 2019, 97-122. Benton, A., Coppersmith, G., & Dredze, M. (2017). Ethical research protocols for social media health research. Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, 94–102. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. Boyd, R. L., Ashokkumar, A., Seraj, S., & Pennebaker, J. W. (2022). The development and psychometric properties of LIWC-22. Austin, TX: University of Texas at Austin. Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1, The Center for Research in Psychophysiology, University of Florida. Butler, D. (2013). When Google got flu wrong. Nature, 494(7436), Article 7436. https://doi.org/10.1038/494155a Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: Content analysis of Tweets during the 2009 H1N1 outbreak. PloS One, 5(11), e14118. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., & Tesconi, M. (2017). The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. Proceedings of the 26th International Conference on World Wide Web Companion, 963–972. Culotta, A. (2014a). Estimating county health statistics with Twitter. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1335–1344. Culotta, A. (2014b). Reducing sampling bias in social media data for county health inference. Joint Statistical Meetings Proceedings, 1–12. Davis, C. A., Varol, O., Ferrara, E., Flammini, A., & Menczer, F. (2016). Botornot: A system to evaluate social bots. Proceedings of the 25th International Conference Companion on World Wide Web, 273–274. De Choudhury, M., Counts, S., & Horvitz, E. (2013). Social media as a measurement tool of depression in populations. Proceedings of the 5th Annual ACM Web Science Conference, 47–56. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391. DeLucia, A., Wu, S., Mueller, A., Aguirre, C., Resnik, P., & Dredze, M. (2022). Bernice: A Multilingual Pre-trained Encoder for Twitter. 6191–6205. https://aclanthology.org/2022. emnlp-main.415 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423 Dodds, P. S., Clark, E. M., Desu, S., Frank, M. R., Reagan, A. J., Williams, J. R., Mitchell, L., Harris, K. D., Kloumann, I. M., & Bagrow, J. P. (2015). Human language reveals a universal positivity bias. Proceedings of the National Academy of Sciences, 112(8), 2389–2394. Dodds, P. S., Harris, K. D., Kloumann, I. M., Bliss, C. A., & Danforth, C. M. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PloS One, 6(12), e26752. Dodds, P. S., Minot, J. R., Arnold, M. V., Alshaabi, T., Adams, J. L., Dewhurst, D. R., Reagan, A. J., & Danforth, C. M. (2020). Long-term word frequency dynamics derived from Twitter are corrupted: A bespoke approach to detecting and removing pathologies in ensembles of time series. ArXiv Preprint ArXiv:2008.11305. Durahim, A. O., & Coskun, M. (2015). # iamhappybecause: Gross National Happiness through Twitter analysis and big data. Technological Forecasting and Social Change, 99, 92–105. Ebert, T., Götz, F. M., Mewes, L., & Rentfrow, P. J. (2022). Spatial analysis for psychologists: How to use individual-level data for research at the geographically aggregated level. Psychological Methods. Eichstaedt, J. C., Schwartz, H. A., Kern, M. L., Park, G., Labarthe, D. R., Merchant, R. M., Jha, S., Agrawal, M., Dziurzynski, L. A., & Sap, M. (2015). Psychological language on Twitter predicts county-level heart disease mortality. Psychological Science, 26(2), 159–169. Elmas, T., Overdorf, R., & Aberer, K. (2022). Characterizing Retweet Bots: The Case of Black Market Accounts. Proceedings of the International AAAI Conference on Web and Social Media, 16, 171–182. Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The rise of social bots. Communications of the ACM, 59(7), 96–104. Flanagan, O., LeDoux, J. E., Bingle, B., Haybron, D. M., Mesquita, B., Moody-Adams, M., Ren, S., Sun, A., Frey, Y. Y. W. W. responses from critics J. A., Markus, H. R., Sachs, J. D., & Tsai, J. L. (2023). Against Happiness (p. 360 Pages). Columbia University Press. Forgeard, M. J., Jayawickreme, E., Kern, M. L., & Seligman, M. E. (2011). Doing the right thing: Measuring wellbeing for public policy. International Journal of Wellbeing, 1(1). Fukuda, M., Nakajima, K., & Shudo, K. (2022). Estimating the Bot Population on Twitter via Random Walk Based Sampling. IEEE Access, 10, 17201–17211. https://doi.org/10.1109/ ACCESS.2022.3149887 Gallup, & Meta. (2022). The State of Social Connections.

RkJQdWJsaXNoZXIy NzQwMjQ=