World Happiness Report 2023 162 OECD. (2013). OECD guidelines on measuring subjective well-being. OECD publishing. http://dx.doi. org/10.1787/9789264191655-en Paul, M., & Dredze, M. (2011). You are what you tweet: Analyzing Twitter for public health. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 265–272. Paul, M. J., & Dredze, M. (2012). A model for mining public health topics from Twitter. Health, 11(16–16), 1. Paul, M. J., & Dredze, M. (2014). Discovering health topics in social media using topic models. PloS One, 9(8), e103408. Pellert, M., Metzler, H., Matzenberger, M., & Garcia, D. (2022). Validating daily social media macroscopes of emotions. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/ s41598-022-14579-y Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015. UT Faculty/Researcher Works. Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates, 71, 2001. Qi, J., Fu, X., & Zhu, G. (2015). Subjective well-being measurement based on Chinese grassroots blog text sentiment analysis. Information & Management, 52(7), 859–869. https://doi. org/10.1016/j.im.2015.06.002 Sametoglu, S., Pelt, D., Ungar, L. H., & Bartels, M. (2022). The Value of Social Media Language for the Assessment of Wellbeing: A Systematic Review and Meta-Analysis. Santillana, M., Zhang, D. W., Althouse, B. M., & Ayers, J. W. (2014). What Can Digital Disease Detection Learn from (an External Revision to) Google Flu Trends? American Journal of Preventive Medicine, 47(3), 341–347. https://doi.org/10.1016/ j.amepre.2014.05.020 Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon, F., & Gallé, M. (2022). BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. ArXiv Preprint ArXiv:2211.05100. Schwartz, H. A., Eichstaedt, J., Blanco, E., Dziurzynski, L., Kern, M., Ramones, S., Seligman, M., & Ungar, L. (2013). Choosing the right words: Characterizing and reducing error of the word count approach. Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity, 296–305. Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Lucas, R. E., Agrawal, M., Park, G. J., Lakshmikanth, S. K., Jha, S., & Seligman, M. E. (2013). Characterizing Geographic Variation in Well-Being Using Tweets. ICWSM. Schwartz, H. A., Sap, M., Kern, M. L., Eichstaedt, J. C., Kapelner, A., Agrawal, M., Blanco, E., Dziurzynski, L., Park, G., & Stillwell, D. (2016). Predicting individual well-being through the language of social media. 516–527. Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of Facebook and Twitter status updates. Journal of Medical Internet Research, 20(5), e9267. Shah, D. S., Schwartz, H. A., & Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5248–5264. https://doi.org/10.18653/v1/2020.acl-main.468 Shao, C., Ciampaglia, G. L., Varol, O., Yang, K.-C., Flammini, A., & Menczer, F. (2018). The spread of low-credibility content by social bots. Nature Communications, 9(1), 1–9. Silver, L., Smith, A., Johnson, C., Taylor, K., Jiang, J., Anderson, M., & Rainie, L. (2019). Mobile connectivity in emerging economies. Pew Research Center, 7. Smith, L., Giorgi, S., Solanki, R., Eichstaedt, J., Schwartz, H. A., Abdul-Mageed, M., Buffone, A., & Ungar, L. (2016). Does ‘well-being’ translate on Twitter? Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2042–2047. Townsend, L., & Wallace, C. (2017). The ethics of using social media data in research: A new framework. In The ethics of online research (Vol. 2, pp. 189–207). Emerald Publishing Limited. U.N. (2016). Transforming our world: The 2030 agenda for sustainable development. Vural, A. G., Cambazoglu, B. B., Senkul, P., & Tokgoz, Z. O. (2013). A framework for sentiment analysis in turkish: Application to polarity detection of movie reviews in turkish. In Computer and Information Sciences III (pp. 437–445). Springer. Wang, N., Kosinski, M., Stillwell, D. J., & Rust, J. (2014). Can Well-Being be Measured Using Facebook Status Updates? Validation of Facebook’s Gross National Happiness Index. Social Indicators Research, 115(1), 483–491. https://doi.org/10.1007/ s11205-012-9996-9 Wang, Z., Hale, S., Adelani, D. I., Grabowicz, P., Hartman, T., Flöck, F., & Jurgens, D. (2019). Demographic inference and representative population estimates from multilingual social media data. The World Wide Web Conference, 2056–2067. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. https://doi.org/10.3758/s13428-012-0314-x Wojcik, S., & Hughes, A. (2019). Sizing up Twitter users. PEW Research Center, 24. Wolf, M., Horn, A. B., Mehl, M. R., Haug, S., Pennebaker, J. W., & Kordy, H. (2008). Computergestützte quantitative textanalyse: Äquivalenz und robustheit der deutschen version des linguistic inquiry and word count. Diagnostica, 54(2), 85–98. Yaden, D. B., Giorgi, S., Jordan, M., Buffone, A., Eichstaedt, J., Schwartz, H. A., Ungar, L., & Bloom, P. (2022). Characterizing Empathy and Compassion Using Computational Linguistic Analysis. in press. Zamani, M., Buffone, A., & Schwartz, H. A. (2018). Predicting human trustfulness from Facebook language. ArXiv Preprint ArXiv:1808.05668.
RkJQdWJsaXNoZXIy NzQwMjQ=